Urbanisation et parcellaire

Formation et transformations de la ville-territoire autour des grandes propriétés du Brabant wallon au 19e et au 20e siècle

À la lumière du découpage parcellaire de la grande propriété terrienne, cette recherche propose un regard descriptif original sur l'urbanisation brabançonne au sein des processus de métropolisation à l’œuvre autour de Bruxelles durant le 20e siècle et s’inscrit dans un corpus d’études en urbanisme en Belgique. Lire la suite

À la lumière du découpage parcellaire de la grande propriété terrienne, cette recherche propose un regard descriptif original sur l'urbanisation brabançonne au sein des processus de métropolisation à l’œuvre autour de Bruxelles durant le 20e siècle et s’inscrit dans un corpus d’études en urbanisme en Belgique.
À partir d’une description morphologique des transformations des grands domaines fonciers ce travail interroge leur influence dans la forme contemporaine du territoire urbanisé. L’enquête est menée sur le territoire du Brabant wallon, historiquement composé de grands domaines fonciers qui appartenaient à la noblesse, à l’Église ou à des propriétaires industriels et bourgeois. Se pose alors la question des formes d’urbanisations produites par les grandes propriétés et en quoi elles engagent les conditions urbaines actuelles.
La lecture proposée de la construction de ces conditions spatiales et matérielles se fait à travers l’investigation de six cas d’études de grands domaines et la création de représentations cartographiques. Les grandes structures parcellaires sont examinées afin de déterminer si elles ont joué un rôle constitutif dans la formation et les transformations de l’urbanisation au sein des processus de métropolisation.
La thèse est que l’évolution des conditions urbaines du Brabant wallon a été influencée par la recomposition parcellaire des grands domaines et que ces conditions constituent aujourd’hui un ensemble paysager, urbain et métropolitain spécifique. Cette recherche propose une lecture descriptive et interprétative de la situation actuelle de la ville-territoire en Brabant wallon qui éclaire un état contemporain et ouvre des perspectives pour les enjeux de son développement futur.


Livre broché - 52,00 €

InfoPour plus d'informations à propos de la TVA et d'autres moyens de paiement, consultez la rubrique "Paiement & TVA".

Spécifications


Éditeur
Presses universitaires de Louvain
Auteur
Guillaume Vanneste,
Set
Thèses de l'Université catholique de Louvain (UCL) | n° 25
Langue
français
BISAC Subject Heading
ARC010000 ARCHITECTURE / Urban & Land Use Planning
BIC subject category (UK)
RPC Urban & municipal planning
Code publique Onix
06 Professionnel et académique
CLIL (Version 2013-2019 )
3076 Architecture/Urbanisme
Date de première publication du titre
24 avril 2023
Subject Scheme Identifier Code
: Sciences appliquées
: Urbanisme et développement territorial

Livre broché


Date de publication
01 janvier 2007
ISBN-13
9782874630682
Ampleur
Nombre de pages de contenu principal : 264
Code interne
75708
Format
16 x 24 x 1,5 cm
Poids
434 grammes
Prix
21,89 €
ONIX XML
Version 2.1, Version 3

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


List of Figures xvii

List of Tables xxvii

List of Abbreviations xxxi

List of Symbols xxxiii

1 Introduction 1

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Timeline of Semiconductor Devices . . . . . . . . . . 1

1.3 Development of SOI MOSFET's . . . . . . . . . . . . 2

1.4 Why Novel Devices based on SOI Technology? . . . . 6

1.5 Multiple-gate devices . . . . . . . . . . . . . . . . . . 8

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . 8

1.5.2 Why the move to multiple-gate devices? . . . . 12

1.5.3 Advantages of the multiple-gate structure . . . 13

1.5.3.1 Subthreshold Regime . . . . . . . . 13

1.5.3.2 Increased drain current . . . . . . . 15

1.5.3.3 Speed superiority . . . . . . . . . . 17

1.5.3.4 Volume inversion . . . . . . . . . . 17

1.6 PresentWork . . . . . . . . . . . . . . . . . . . . . . 19

2 Numerical simulation tools 27

2.1 Numerical simulations . . . . . . . . . . . . . . . . . 27

2.2 Monte-Carlo Simulation . . . . . . . . . . . . . . . . 28

2.3 Challenges and needs . . . . . . . . . . . . . . . . . . 28

2.4 Different numerical simulation tools . . . . . . . . . . 30

2.5 Numerical simulation: ATLAS Package . . . . . . . . 33

2.5.1 Theory of Carrier Statistics . . . . . . . . . . . 33

2.5.2 Transport model . . . . . . . . . . . . . . . . 34

2.5.2.1 Drift-diffusion model . . . . . . . . 35

2.5.2.2 Energy Balance model . . . . . . . . 36

2.5.3 Recombination and generation of carriers . . . 37

2.5.4 Impact Ionization . . . . . . . . . . . . . . . . 38

2.5.5 Interface charge . . . . . . . . . . . . . . . . . 41

2.5.6 Mobility . . . . . . . . . . . . . . . . . . . . 41

2.5.7 Self-heating . . . . . . . . . . . . . . . . . . . 42

2.5.8 Carrier heating . . . . . . . . . . . . . . . . . 43

2.6 Doping Profile . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 45

3 Graded-Channel Single-Gate and Double-Gate SOI MOSFETs 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Fabrication of Graded-Channel devices . . . . . . . . 50

3.3 Graded-Channel Single-Gate SOI MOSFET . . . . . . 54

3.3.1 Threshold voltage and Subthreshold-slope at Low- Vds . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Saturation Current . . . . . . . . . . . . . . . 57

3.3.3 Analog Characteristics . . . . . . . . . . . . . 59

3.4 Graded-Channel Double Gate devices . . . . . . . . . 63

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . 63

3.4.2 Analytical Modeling . . . . . . . . . . . . . . 66

3.4.3 Subthreshold Regime . . . . . . . . . . . . . . 68

3.4.4 Saturation Current . . . . . . . . . . . . . . . 69

3.4.5 Analog characteristics . . . . . . . . . . . . . 73

3.4.5.1 Gate transconductance . . . . . . . . 73

3.4.5.2 Transconductance-to-current ratio . . 75

3.4.5.3 Early voltage . . . . . . . . . . . . . 76

3.4.5.4 Voltage gain . . . . . . . . . . . . . 79

3.4.6 Graded-Channel architecture: Physics . . . . . 82

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 87

4 Planar Double-Gate SOI MOSFET with prepatterned cavities 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Planar double-gate MOSFET fabrication techniques . . 90

4.2.1 Gate-All-Around by isotropic etch of buried oxide 90

4.2.2 CEA-LETI wafer bonding . . . . . . . . . . . 91

4.2.2.1 Non-self-aligned double-gate wafer bondingprocess . . . . . . . . . . . . . . 91

4.2.2.2 Self-aligned double-gate wafer bondingprocess . . . . . . . . . . . . . . 94

4.2.3 Double-gate devices fabricated based on the Siliconon- Nothing device . . . . . . . . . . . . . . . 96

4.3 Double-gate fabrication with prepatterned cavities and wafer bonding . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Critical points . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Surface activation . . . . . . . . . . . . . . . . 103

4.4.2 Annealing . . . . . . . . . . . . . . . . . . . . 112

4.4.3 Cleanliness . . . . . . . . . . . . . . . . . . . 114

4.4.4 TMAH etching . . . . . . . . . . . . . . . . . 114

4.4.5 Chemical vapor deposition of Polysilicon into buried cavities . . . . . . . . . . . . . . . . . 115

4.4.6 Alignment of top and bottom gates . . . . . . . 118

4.5 Electrical characterization of built planar DG MOSFETs 120

4.6 Silicon-on-Nothing . . . . . . . . . . . . . . . . . . . 125

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 135

5 Quasi Double-Gate SOI MOSFET 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Devices analyzed . . . . . . . . . . . . . . . . . . . . 140

5.3 Analog and Digital analysis . . . . . . . . . . . . . . . 142

5.3.1 Analysis of 30 nm Si thickness devices . . . . 142

5.3.2 Analysis of 20 nm Si thickness devices . . . . 149

5.4 Limitation of emulating a Quasi Double-gate . . . . . 155

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 161

6 Performance comparison of Multiple-gate MOS devices 165

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Numerical simulations of Multiple-gate MOSFETs . . 166

6.2.1 Subthreshold static performance . . . . . . . . 169

6.2.2 Analog static Analysis . . . . . . . . . . . . . 170

6.2.3 AC Analysis . . . . . . . . . . . . . . . . . . 177

6.2.3.1 Intrinsic capacitances . . . . . . . . 178

6.2.3.2 Parasitic capacitiances . . . . . . . . 178

6.3 Experimental results: FinFETs . . . . . . . . . . . . . 184

6.3.1 FinFET architectures . . . . . . . . . . . . . . 184

6.3.2 Measured DC characteristics . . . . . . . . . . 186

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 191

7 Conclusion 195

A Example of net list for 2-D Double-Gate SOI MOSFET numerical simulation 201

B Example of net list for a 3-D Double-Gate SOI MOSFET numerical simulation 207

Bibliography 212