Grèves et conflictualité sociale en 2018 I. Mobilisations transversales

Courrier hebdomadaire n° 2422-2423
First Edition

The thesis presents different control design approaches for stabilizing networks of quasi-linear hyperbolic partial differential equations. These equations are usually conservative, which gives them interesting properties to design stabilizing control laws.

Two main design approaches are developed: a methodology based on entropies and Lyapunov functions and a methodology based on the Riemann invariants. The stability theorems are illustrated using numerical simulations. Two practical applications of these methodologies are presented. Network of navigation channels are modelled using the Saint-Venant equation (also known as the Shallow Water Equations). The stabilization problem of such system has an industrial importance in order to satisfy the navigation constraints and to optimize the production of electricity in hydroelectric plants, usually located at each hydraulic gate. A second application deals with the regulation of water waves in moving tanks. This problem is also modelled by a modified version of the shallow water equations and appears in a number industrial fields which deal with liquid moving parts.


Paperback - In French 12.40 €

InfoFor more information on VAT and other payment methods, see "Payment & VAT".

Specifications


Publisher
CRISP - Centre de Recherche et d'Information Socio-Politiques
Author
Iannis Gracos,
Collection
Courrier hebdomadaire.
ISSN
00089664
Language
French
Publisher Category
Economics and Social Sciences > Political and Social Science
Publisher Category
Economics and Social Sciences
Onix Audience Codes
06 Professional and scholarly
Title First Published
2004
Type of Work
Thesis

Paperback


Product Detail
1
Publication Date
18 November 2019
ISBN-13
9782870752180
Code
9782870752180
Dimensions
20.5 x 27 cm
List Price
12.40 €
ONIX XML
Version 2.1, Version 3

Google Book Preview


Write a commentary