Characterization and Modeling of SOI RF integrated components


First Edition

Le conseiller principal d'éducation, spécificité du système scolaire français est un professionnel dont les missions riches et variées restent au final peu connues à même si paradoxalement le personnage est souvent très bien identifié des élèves et des familles. Read More

Le conseiller principal d'éducation, spécificité du système scolaire français est un
professionnel dont les missions riches et variées restent au final peu connuesà même si
paradoxalement le personnage est souvent très bien identifié des élèves et des familles. Ce numéro thématique s’attache ainsi à mieux faire découvrir les contours et les enjeux du métier en mettant tout d’abord l’accent sur sa dimension historique dont l’héritage est encore très présent dans les représentations collectives à puis en s’intéressant à
l’activité quotidienne du CPE aujourd’hui au sein de l’établissement secondaire et aux différents aspects de sa formation professionnelle.


Paperback - In French 16.00 €

InfoFor more information on VAT and other payment methods, see "Payment & VAT".

Specifications


Publisher
Presses universitaires de Louvain
Title Part
Numéro 15
Author
Morin Dehan,
Collection
Thèses de l'École polytechnique de Louvain | n° 15
Language
English
Publisher Category
Applied Sciences > Electricity
Publisher Category
Applied Sciences
BISAC Subject Heading
TEC000000 TECHNOLOGY & ENGINEERING
Onix Audience Codes
06 Professional and scholarly
CLIL (Version 2013-2019)
3069 TECHNIQUES ET SCIENCES APPLIQUEES
Title First Published
15 July 2014
Type of Work
Journal Issue

Paperback


Publication Date
01 January 2003
ISBN-13
9782930344393
Extent
Main content page count : 232
Code
2930344393
Dimensions
16 x 24 x 1.3 cm
Weight
348 grams
List Price
18.60 €
ONIX XML
Version 2.1, Version 3

Google Book Preview


Write a commentary

Contents


Scientific publications vi
Introduction x
1 SOI technologies for analog applications 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Comparison of SOI and bulk MOSFET . . . . . . . . . . . . . . . . . . . 2
1.3 The SOI materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Structure and properties of the various SOI MOSFET transistors, the influence of the silicon film . . . . . . . . . . . . . . 5
1.3.1.1 Comparison between the structures of long channel FD and PD transistors . . . . . . . . . . . . . . . . . 5
1.3.1.2 Properties of FD and PD devices . . . . . . . . . . . . . 5
1.3.1.3 Threshold voltage . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 The position of industry . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Insulators and substrates used . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Classical SOI substrate . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 High Resistivity SOI substrate . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Silicon-on-Membrane . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Silicon-on-Anything . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.5 Silicon-on-Sapphire . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Size Does Matter: Evolution of the Microelectronic . . . . . . . . . . . 17
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 On-wafer microwave measurement methods . . . . . . . 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Waves and scattering parameters . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Power waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Pseudo waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Scattering Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4.1 The transmission line . . . . . . . . . . . . . . . . . . . 31
2.2.4.2 The thru line . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.6 Immittance Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.7 Change of reference impedance . . . . . . . . . . . . . . . . . . 37
2.2.7.1 Scattering Matrix . . . . . . . . . . . . . . . . . . . . . . 37
2.2.7.2 Pseudo scattering matrix . . . . . . . . . . . . . . . . . 38
2.2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 The Vector Network Analyzer . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2.1 The transfer function formalism . . . . . . . . . . . . 41
2.3.2.2 General TAN self calibration procedure . . . . . . . . 43
2.3.2.3 Practical applications . . . . . . . . . . . . . . . . . . . 47
2.4 On-wafer measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.2 Measurement of silicon CMOS devices . . . . . . . . . . . . . . 50
2.4.2.1 Limitations due to CMOS technology . . . . . . . . . . 50
2.4.2.2 Two steps calibration . . . . . . . . . . . . . . . . . . . 50
2.4.2.3 Alternative to the two step calibration . . . . . . . . . 59
2.4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Optimization of the measurement procedure . . . . . . . . . . 60
2.4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4.3.2 TRM Calibration . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.3.3 On-wafer TRL Calibration . . . . . . . . . . . . . . . . . 63
2.4.3.4 In uence of the power . . . . . . . . . . . . . . . . . . . 65
2.4.3.5 Control of the quality of the calibration . . . . . . . . 65
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3 RF modeling and characterization of sub-micron MOSFET 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Small signal model of integrated SOI MOSFET . . . . . . . . . . . . . . 70
3.2.1 Useful e ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Quasi-static model . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Non-quasi-static model . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.4 Extrinsic model and access elements . . . . . . . . . . . . . . . 74
3.2.4.1 Extrinsic capacitances . . . . . . . . . . . . . . . . . . . 74
3.2.4.2 Extrinsic resistances and inductances . . . . . . . . . 75
3.2.4.3 Extrinsic-Extrinsic capacitances . . . . . . . . . . . . . 77
3.2.4.4 Access parameters . . . . . . . . . . . . . . . . . . . . . 79
3.3 Extraction procedure of the small signal model . . . . . . . . . . . . . 81
3.3.1 Parasitic access elements . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Extrinsic-extrinsic capacitances . . . . . . . . . . . . . . . . . . 85
3.3.3 Extrinsic resistances and inductances . . . . . . . . . . . . . . . 88
3.3.4 Extrinsic capacitances . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.5 Intrinsic elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.6 Comparison between FD, PD, and Bulk MOSFET . . . . . . . . 98
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4 Performances of alternative MOSFETs in SOI technologies 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Relevant gures of merit for RF applications . . . . . . . . . . . . . . 103
4.2.1 Figures of Merit of integrated transistors . . . . . . . . . . . . 104
4.2.2 Cut-o frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 The Dynamic Threshold MOSFET . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Frequency behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.4.1 Medium frequency . . . . . . . . . . . . . . . . . . . . . 114
4.3.4.2 High frequency . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4 The Graded Channel MOSFET . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.2 Device fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4.3 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . 126
4.4.3.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4.4 RF properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5 Passive elements on SOI technologies 143
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Properties of transmission lines . . . . . . . . . . . . . . . . . . . . . . 143
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2.2 Coplanar waveguide (CPW) . . . . . . . . . . . . . . . . . . . . . 144
5.2.3 Thin lm microstrip line (TFMS) . . . . . . . . . . . . . . . . . . 145
5.2.4 Strip line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3 Modeling of integrated inductors . . . . . . . . . . . . . . . . . . . . . . 150
5.3.1 Topology under scope . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.2 De nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.2.1 Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . 152
5.3.2.2 Quality factor . . . . . . . . . . . . . . . . . . . . . . . . 153
5.3.3 Modeling of square spiral inductors . . . . . . . . . . . . . . . . 160
5.3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.3.3.2 Modeling 3-coupled lines on multilayered silicon substrate . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.3.3 Modeling of the admittance matrix of n-coupled lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.3.4 Modeling of the inductor . . . . . . . . . . . . . . . . . 171
5.3.3.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.4 Prospective design of square spiral inductor. . . . . . . . . . . 181
5.3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.3.4.2 Design rules . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.3.4.3 Prospecting new technologies . . . . . . . . . . . . . . 186
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6 Conclusion 195
A Relations between scattering and immittance parameters I
B Determination of extrinsic-extrinsic capacitances III
C Alternative uses of the body contacted MOSFET VII
D Modeling of microstrip lines by using variational principle XI
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
D.2 Using a variational principle . . . . . . . . . . . . . . . . . . . . . . . . . XI
D.3 Propagation modes determination of 3-coupled microstrip lines . . XIII