On n'est jamais préparé à ça

Nouvelles
Première édition

Préface de Ludovic Roubaudi
Dans les récits de Gaëlle Pingault, les personnages ne sont pas préparés aux surprises qui les guettent, et vous non plus, lecteurs. Qu’il s’agisse de regards inattendus ou de reflets troubles, révélant la part claire ou sombre de l’âme, On n’est jamais préparé à ça propose des nouvelles entre deux bords, des situations où, plus que jamais, la nuance est de rigueur. C’est à cet exercice que l’auteure vous convie : chercher ce qui peut relativiser les évidences.



Livre broché - 15,00 €

InfoPour plus d'informations à propos de la TVA et d'autres moyens de paiement, consultez la rubrique "Paiement & TVA".

Spécifications


Éditeur
Presses universitaires de Louvain
Auteur
Gaëlle Pingault,
Préface de
Ludovic Roubaudi,
Collection
Quadrature
Langue
français
BISAC Subject Heading
FIC029000 FICTION / Short Stories (single author)
BIC subject category (UK)
F Fiction & related items
Code publique Onix
01 Grand public
CLIL (Version 2013-2019 )
3621 Nouvelles
Date de première publication du titre
22 décembre 2008
Subject Scheme Identifier Code
Classification thématique Thema: Nouvelles
Type d'ouvrage
Monographie

Livre broché


Date de publication
19 octobre 2017
ISBN-13
9782875586056
Illustrations
1 bibliography/ 1 glossary
Ampleur
Nombre de pages de contenu principal : 226
Dépôt Légal
442 Louvain-la-Neuve, Belgique
Code interne
95771
Format
16 x 24 cm
Poids
367 grammes
Prix
28,80 €
ONIX XML
Version 2.1, Version 3

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Sommaire


Nomenclature xxi
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . 4
2 Preliminaries 7
2.1 Regularized inverse problems . . . . . . . . . . . . . . . . 7
2.1.1 Forward model . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Low complexity priors . . . . . . . . . . . . . . . . 15
2.1.3 Sensing model and embedding . . . . . . . . . . . 25
2.2 Recovery methods . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 General optimization formulation . . . . . . . . . 33
2.2.2 Non-convex recovery methods . . . . . . . . . . . 35
2.2.3 Convex recovery methods . . . . . . . . . . . . . . 41
2.2.4 Algorithms for convex optimization . . . . . . . . 46
2.2.5 Dictionary Learning . . . . . . . . . . . . . . . . . 51
3 Sparse Support Recovery with Convex Fidelity Constraint 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.1 Sparse regularization with convex fidelity constraint 58
3.1.2 Dual Certificates . . . . . . . . . . . . . . . . . . . 60
3.1.3 Main result for sparse support recovery . . . . . . 62
3.1.4 Relation to PriorWorks . . . . . . . . . . . . . . . 64
x Table of contents
3.2 Preliminaries and main result . . . . . . . . . . . . . . . . 65
3.2.1 Noiseless support stability . . . . . . . . . . . . . . 65
3.2.2 Model subspace and restricted injectivity conditions 66
3.2.3 Formal statement of the main result . . . . . . . . 71
3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Proofs of the lemmas and subdifferential decomposability
. . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . 83
3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . 91
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Online Convolutional Dictionary Learning for
Multimodal Imaging 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 97
4.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 99
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . 100
4.2.2 Online Convolutional Dictionary Learning
Algorithm . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Dictionary update . . . . . . . . . . . . . . . . . . 105
4.2.4 Implementation details . . . . . . . . . . . . . . . 107
4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 110
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Multispectral Compressive Imaging Strategies using
Fabry-Pérot Filtered Sensors 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 121
5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 122
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Fabry-Pérot Filtered Sensors . . . . . . . . . . . . 125
5.2.2 Forward model and analysis prior . . . . . . . . . 127
Table of contents xi
5.2.3 Recovery Method . . . . . . . . . . . . . . . . . . . 128
5.3 Multispectral Compressive Imaging by Generalized Inpainting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Image Formation Model . . . . . . . . . . . . . . . 132
5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Multispectral Compressive Imaging by Out-of-Focus
Random Convolution . . . . . . . . . . . . . . . . . . . . . 140
5.4.1 Image Formation Model . . . . . . . . . . . . . . . 140
5.4.2 Non-idealities and practical considerations . . . . 145
5.4.3 Sensing matrix implementation . . . . . . . . . . . 151
5.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . 153
5.5 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . 155
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6 Conclusions 163
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Perspectives and open questions . . . . . . . . . . . . . . 166
References 173
Appendix A Elements of Convex Optimization 195