This thesis describes a task model-based approach for developing interactive systems, where task models succeeded in supporting the various phases of the software development life cycle: from design, to verification, to... Lire la suite
This thesis describes a task model-based approach for developing interactive systems, where task models succeeded in supporting the various phases of the software development life cycle: from design, to verification, to evaluation. Different techniques have been used in the phases, all of them taking benefits from the expressiveness and flexibility provided by the CTT notation and the related tool.An application of the proposed approach to a case study in the Air Traffic Control domain has been illustrated in the thesis.
1 Introduction 1
1.1 Motivation . 1
1.2 Overview 8
2 The discontinuous Galerkin method 11
2.1 Model equations11
2.2 Elements and functional spaces . 12
2.3 Variational formulation 14
2.4 Shape functions23
3 Extending the DG variational formulation 27
3.1 Stability of the interior penalty method on hybrid meshes27
3.2 Non-conformal formulation . 35
3.3 Frequential formulation of the homentropic LEE . 44
4 Iterative methods 57
4.1 Newton methods . 59
4.2 Multigrid methods 63
4.3 Concluding remarks . 71
5 Efficient data structures 75
5.1 Algebraic primitives on the computer . 76
5.2 Data Structures84
5.3 Efficient assembly . 89
5.4 Conclusions 102
6 noFUDGe: a first industrial application 105
6.1 Description of the flow 106
6.2 Computational setup . 106
6.3 Comparison of computed flow fields108
6.4 Validation . 114
6.5 Comparison of computational cost. 116
6.6 Scaling tests 116
6.7 Conclusions 118
i
ii CONTENTS
7 Current status and prospects 119
7.1 Conclusions 119
7.2 Current status of the Argo group 120
7.3 Prospects 121
A Elements of functional analysis A.3
A.1 Hilbert spaces. A.3
A.2 Solvability of variational problems. A.4
A.3 The Lax-Milgram theoremA.5
A.4 The most simple exampleA.5
B Function spaces, reference elements and quadrature A.7
B.1 Construction of Lagrange interpolants . A.7
B.2 Interpolation on the boundary A.8
B.3 Specific elements . A.9
B.4 Quadrature rules . A.12
C Sharp values for the trace inverse inequality A.15
C.1 Simplices A.16
C.2 Outline ofWarburton's method . A.16
C.3 Tensor product elements. A.17
C.4 Wedges . A.19
C.5 Lagrange interpolation on pyramidsA.21
C.6 The Pascal space on the pyramid A.25
D Nonlinear instability of quadrature-free methods A.27
D.1 Original formulation . A.27
D.2 Extension to non-linear equations of state . A.30
D.3 Spurious modesA.30
Bibliography i