Development of an AOTF-based hyperspectral imager for atmospheric remote sensing


Editie 1

This work addresses important aspects in the development of a new spaceborne instrument called ALTIUS. The imaging capability is first applied to the inversion of atmospheric pressure profiles from the analysis of the apparent flattening of a setting... Lees verder

The evolution of atmospheric composition is a complex and living research area. Models need data on a global scale in order to follow, reproduce and forecast the spatio-temporal fields of key species and identify their contribution in the Earth radiative balance. In many aspects, the vertical distribution of these species is an important parameter. Unfortunately, the number of spaceborne sounders capable of providing such information is decreasing. Moreover, the instrumental concepts deployed so far suffer from tangent altitude registration issues. In the particular frame of ozone recovery, this causes large uncertainties compared to the small trends to be observed.
IASB-BIRA has proposed a new spaceborne instrument called ALTIUS. It is a full mission concept aiming at the acquisition of spectral images in limb-scattering and occultation geometries. The spectral selection is performed by an acoustooptical tunable filter (AOTF) and the PROBA-class satellite will offer good pointing control and manoeuvrability. Altogether, the measurement modes, the hyperspectral images, and the spacecraft performance will ensure low-uncertainty and high-vertical resolution geophysical products.
This work addresses important aspects in the development of ALTIUS. The imaging capability is first applied to the inversion of atmospheric pressure profiles from the analysis of the apparent flattening of a setting Sun. Then the spectral feature is added such that the simulation of limb-scattering measurements yield the final error budget of O3 and NO2 profiles. A complete description of the AOTF is also provided and the performance of two units operating in the UV and VIS ranges is examined in laboratory experiments. Finally, a prototype is used to demonstrate remote sensing capabilities with the detection of NO2 in industrial smokes.


Paperback - In het Engels 26,00 €

InfoVoor meer informatie over BTW en andere belatingsmogelijkheden, zie hieronder "Betaling & BTW".

Gegevens


Uitgever
Presses universitaires de Louvain
Auteur
Emmanuel Dekemper,
Collectie
Thèses de la Faculté des sciences
Taal
Engels
Categorie uitgever
> Exacte wetenschappen > Natuurkunde > Astronomie en geofysica
Categorie uitgever
> Exacte wetenschappen > Natuurkunde
Categorie uitgever
> Exacte wetenschappen
BISAC Subject Heading
SCI005000 SCIENCE / Physics / Astrophysics
Onix Audience Codes
06 Professional and scholarly
CLIL (2013)
3058 Physique > 3067 Sciences de la terre (géologie, climatologie, hydrologie…)
Voor het eerst gepubliceerd
07 november 2014

Paperback


Publicatie datum
07 november 2014
ISBN-13
9782875583444
Omvang
Aantal pagina's hoofdinhoud : 198
Code
90676
Formaat
16 x 24 x 1,1 cm
Gewicht
324 grams
Aanbevolen verkoopprijs
26,00 €
ONIX XML
Version 2.1, Version 3

Google Book Preview


Schrijf een reactie

Inhoud


Remerciements v
List of acronyms ix
Introduction 1
1 Atmospheric remote sensing 5
1.1 Milestones in atmospheric experimentation . . . . . . . . 5
1.1.1 The in situ atmospheric measurements precursors 5
1.1.2 The advent of ground-based atmospheric remote
sensing . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Spaceborne atmospheric instruments . . . . . . . . 9
1.2 Importance of vertically resolved information . . . . . . . 11
1.2.1 Stratospheric ozone trends . . . . . . . . . . . . . . 12
1.2.2 Dispersion of the measurements . . . . . . . . . . . 14
1.2.3 Spatio-temporal sampling bias . . . . . . . . . . . 15
1.2.4 Vertically-resolved data and atmospheric models . 16
1.3 The radiative transfer problem for limb scattering instruments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 The photon transport equation . . . . . . . . . . . 18
1.3.2 Rayleigh scattering phase function . . . . . . . . . 21
1.3.3 Rayleigh scattering cross-section . . . . . . . . . . 22
1.3.4 Transport equation in a purely Rayleigh scattering
atmosphere . . . . . . . . . . . . . . . . . . . . . . 23
1.3.5 Molecular absorption . . . . . . . . . . . . . . . . . 25
1.3.6 Radiative transfer equation for a single scattering
and absorbing atmosphere . . . . . . . . . . . . . . 25
1.3.7 Typical limb-scatter radiance profile . . . . . . . . 27
1.4 From radiance to concentration profiles: the inverse problem 29
2 Imaging and atmospheric remote sensing—The refracted
Sun case 35
2.1 Quantitative atmospheric information based on imaging
techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Scope of the theoretical work: pressure profile retrieval
from the apparent flattening of the solar disk . . . . . . . 36
2.3 Sun image simulation . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Virtual instrument definition . . . . . . . . . . . . 37
2.3.2 Solar limb darkening . . . . . . . . . . . . . . . . . 38
2.3.3 Atmospheric refractive index . . . . . . . . . . . . 39
2.3.4 1-D ray tracing problem . . . . . . . . . . . . . . . 39
2.3.5 2-D ray tracing problem . . . . . . . . . . . . . . . 41
2.4 Zernike moments . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Pressure profiles retrieval . . . . . . . . . . . . . . . . . . 46
2.5.1 Training dataset . . . . . . . . . . . . . . . . . . . 48
2.5.2 Test cases . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.3 Impact of error sources . . . . . . . . . . . . . . . 57
2.6 Adequacy of the proposed method and future work . . . . 58
3 Spectral imaging and atmospheric remote sensing—The
ALTIUS mission 61
3.1 The pointing problem of atmospheric profiling instruments 61
3.1.1 Imaging as an answer to pointing uncertainty . . . 63
3.2 The ALTIUS concept . . . . . . . . . . . . . . . . . . . . . 64
3.3 Nominal orbit and measurement geometries . . . . . . . . 68
3.4 Synthetic limb-scatter radiance . . . . . . . . . . . . . . . 70
3.5 Major payload and platform requirements . . . . . . . . . 71
3.5.1 Signal-to-noise ratio . . . . . . . . . . . . . . . . . 73
3.5.2 Pointing error . . . . . . . . . . . . . . . . . . . . . 73
3.5.3 Wavelength misregistration . . . . . . . . . . . . . 74
3.6 O3 retrieval in bright limb . . . . . . . . . . . . . . . . . . 74
3.6.1 O3 measurements . . . . . . . . . . . . . . . . . . . 74
3.6.2 Measurement error . . . . . . . . . . . . . . . . . . 78
3.6.3 Statement of the inverse problem . . . . . . . . . . 79
3.6.4 Retrieved profile . . . . . . . . . . . . . . . . . . . 83
3.6.5 Vertical resolution . . . . . . . . . . . . . . . . . . 84
3.6.6 Pointing uncertainty . . . . . . . . . . . . . . . . . 86
3.6.7 Spectral uncertainty . . . . . . . . . . . . . . . . . 88
3.6.8 Final O3 retrieval performance budget . . . . . . . 89
3.7 NO2 retrieval in bright limb . . . . . . . . . . . . . . . . . 91
3.7.1 NO2 measurements . . . . . . . . . . . . . . . . . . 91
3.7.2 Statement of the inverse problem . . . . . . . . . . 93
3.7.3 Retrieved profile . . . . . . . . . . . . . . . . . . . 94
3.7.4 Pointing uncertainty . . . . . . . . . . . . . . . . . 96
3.7.5 Spectral uncertainty . . . . . . . . . . . . . . . . . 97
3.7.6 Final NO2 retrieval performance budget . . . . . . 97
4 Acousto-optical tunable filters 99
4.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Theoretical background . . . . . . . . . . . . . . . . . . . 100
4.2.1 Optical waves in birefringent crystals . . . . . . . . 100
4.2.2 Acoustic waves in crystals . . . . . . . . . . . . . . 103
4.2.3 Elasto-optic effect and coupled wave equations . . 105
4.2.4 Basic AOTF parameters . . . . . . . . . . . . . . . 109
4.3 Application to NO2 absorption cross-section measurement 121
4.3.1 Commercial TeO2 AOTF . . . . . . . . . . . . . . 122
4.3.2 Experimental setup . . . . . . . . . . . . . . . . . . 123
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4 KDP-based AOTF for hyperspectral imaging in UV . . . 125
4.4.1 Main AOTF parameters . . . . . . . . . . . . . . . 126
4.4.2 Temperature dependence . . . . . . . . . . . . . . 131
5 AOTF-based hyperspectral imager — Application to the
remote sensing of NO2 in industrial smokes 137
5.1 Instrument description . . . . . . . . . . . . . . . . . . . . 138
5.2 Smokestack experiment . . . . . . . . . . . . . . . . . . . 140
5.2.1 Experimental conditions . . . . . . . . . . . . . . . 140
5.2.2 Measurement principle . . . . . . . . . . . . . . . . 142
5.2.3 Data acquisition and correction . . . . . . . . . . . 144
5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . 146
Conclusion and future research 151
A Error covariance of limb-scatter measurements 155
A.1 Limb scattering measurement uncertainty . . . . . . . . . 156
A.2 Image ratio covariance . . . . . . . . . . . . . . . . . . . . 157
B The MAP log-normally distributed solution 161
C Acousto-optic interaction and polarization aspects 163
Bibliography 169