Heavy tailed functional time series


First Edition

The goal of this thesis is to treat the temporal tail dependence and the cross-sectional tail dependence of heavy tailed functional time series. Functional time series are aimed at modelling spatio-temporal phenomena; for instance rain, temperature, pollution on a given geographical area, with temporally dependent observations. Heavy tails mean that the series can exhibit much higher spikes than with Gaussian distributions for instance. In such cases, second moments cannot be assumed to exist, violating the basic assumption in standard functional data analysis based on the sequence of autocovariance operators. As for random variables, regular variation provides the mathematical backbone for a coherent theory of extreme values. The main tools introduced in this thesis for a regularly varying functional time series are its tail process and its spectral process. These objects capture all the aspects of the probability distribution of extreme values jointly over time and space. The development of the tail and spectral process for heavy tailed functional time series is followed by three theoretical applications. The first application is a characterization of a variety of indices and objects describing the extremal behavior of the series: the extremal index, tail dependence coefficients, the extremogram and the point process of extremes. The second is the computation of an explicit expression of the tail and spectral processes for heavy tailed linear functional time series. The third and final application is the introduction and the study of a model for the spatio-temporal dependence for functional time series called maxima of moving maxima of continuous functions (CM3 processes), with the development of an estimation method.


Paperback - In English 19.00 €

InfoFor more information on VAT and other payment methods, see "Payment & VAT".

Specifications


Publisher
Presses universitaires de Louvain
Title Part
Numéro 205
Author
Thomas Meinguet,
Collection
Thèses de la Faculté des sciences
Language
English
BISAC Subject Heading
SCI000000 SCIENCE
Onix Audience Codes
06 Professional and scholarly
CLIL (Version 2013-2019)
3051 SCIENCES FONDAMENTALES
Title First Published
01 August 2010
Type of Work
Thesis
Includes
Bibliography
Original Language
English

Paperback


Publication Date
01 August 2010
ISBN-13
9782874632358
Extent
Main content page count : 172
Legal Copyright Date
D/2010/9964/34
Code
83086
Dimensions
16 x 24 x 1 cm
Weight
284 grams
List Price
19.00 €
ONIX XML
Version 2.1, Version 3

Google Book Preview


Write a commentary